بررسی هم‌زمان اثرات افزودنی نانوآلومینیم و فرایند اختلاط بر رفتار گرمایی مخلوط ترمیتی حاوی مس اکسید

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار شیمی معدنی، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 استادیار شیمی معدنی، دانشگاه آزاد اسلامی، واحد اسلامشهر، ایران

3 دکتری شیمی معدنی، دانشگاه صنعتی مالک اشتر، تهران، ایران

4 استادیار شیمی فیزیک، دانشگاه صنعتی مالک اشتر، تهران، ایران

5 استادیار مهندسی شیمی، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

در این پژوهش، اثرات افزودنی نانوآلومینیم و فرایند اختلاط بر رفتار گرمایی ترمیت Al/CuO با استفاده از روش‌های تجزیه گرماییDSC  و تصویربرداری FE-SEM بررسی شد. نتایج تجزیه DSC نشان داد که مخلوط ترمیتی µm-Al/nm-CuO فاقد واکنش گرماده است. اما اشتعال مخلوط‌های µm-Al50%+nm-Al50%]/nm-CuO، [µm-Al80%+nm-Al20%]/nm-CuO، [µm-Al95%+nm-Al5%]/nm-CuO و nm-Al/nm-CuO به ترتیب در 600/9، 604/0، 605/5 و ºC 608/4 رخ داد. بررسی رفتار گرمایی این مخلوط‌ها نشان داد که هر چه مقدار افزودنی نانوآلومینیم در فرمولاسیون µm-Al+nm-Al]/nm-CuO] بیشتر باشد، مخلوط‌ها غیرحساس‌تر و پرانرژی‌تر می‌شوند. همچنین، اختلاط فراصوت، دمای اشتعال مخلوط‌های سه‌جزئی گفته‌شده را کاهش و گرمای واکنش آن‌ها را افزایش داد. این بهبود در ویژگی گرمایی، با شکستن کلوخه‌ها و بهبود در کیفیت اختلاط با استفاده از امواج فراصوت توضیح داده شد. در گام بعدی، سینتیک واکنش nm-Al/nm-CuO تهیه‌شده به دو روش اختلاط فیزیکی ساده و اختلاط فراصوت بررسی شد. نتایج نشان داد که مخلوط تهیه‌شده به روش اختلاط فراصوت نسبت به مخلوط تهیه‌شده به روش اختلاط فیزیکی ساده، انرژی فعال‌سازی کمتری دارد. همچنین، اشتعال مخلوط nm-Al/nm-CuO تهیه‌شده به روش اختلاط فراصوت در یک مرحله اصلی رخ داد، در حالی‌که مخلوط ترمیتی مشابه که با روش اختلاط فیزیکی ساده تهیه‌شده بود، دو مرحله واکنش اصلی داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Simultaneous study of the effects of nano-aluminum admixture and mixing process on the thermal behavior of the thermite mixture containing copper oxide

چکیده [English]

In this work, the effects of the nano-aluminum additive and mixing process on the thermal behavior of Al/CuO systems were verified by thermal analysis and field emission scanning electron microscope (FE-SEM( methods. The DSC analysis results showed that there was no exothermic reaction for μm-Al/nm-CuO thermite mixture. However, the ignition of [μm-Al95%+nm-Al5%]/nm-CuO, [μm-Al80%+nm-Al20%]/nm-CuO, [μm-Al50%+nm-Al50%]/nm-CuO and nm-Al/nm-CuO took place at 600.9, 604.0, 605.5 and 608.4°C, respectively. Analysis of thermal behavior of these mixtures showed that the insensitivity and energy of the thermites increased with increasing quantity of nm-Al in [μm-Al+nm-Al]/nm-CuO formulation. Moreover, ultrasonic mixing decreased ignition temperature and increased heat of reaction of these ternary mixtures. This improvement in thermal properties was related to break up the agglomerates and better mixing quality by ultrasonic waves. In the next step, the reaction kinetics of physically mixed and ultrasonicated nm-Al/nm-CuO were investigated. The results revealed that sonicated nm-Al/nm-CuO thermite had lower activation energies than physically-mixed nm-Al/nm-CuO mixture. In addition, the ignition of ultrasonicated and physically-mixed nm-Al/nm-CuO mixtures occurred in one and two main steps, respectively.

کلیدواژه‌ها [English]

  • Al/CuO thermite
  • nanoparticles
  • Ultrasonic mixing
  • Thermal analysis
  • activation energy
[1] Sheikhpour, A.; Hosseini, S.G.; Tavangar, S; Keshavars, M.H.; Journal of Thermal Analysis and Calorimetry 129, 1847-1854, 2017.
[2] Prentice, D.; Master of Science Thesis, Texas Tech University, USA, 2006.
[3] Olszak-Humienik, M.; Thermochimica Acta 378, 107-112, 2008.
[4] Ilunga, K.; Del Fabbro, O.; Yapi, L.; Focke, W.W., Powder Technology 205, 97–102, 2011.
[5] Comet, M.; Siegert, B.; Pichot, V.; Spitzer, D.; Journal of Thermal Analysis and Calorimetry 111, 431-436, 2013.
[6] Ahn, J.Y.; Kim, W.K.; Donggeun, K.C.; Kim, S.H.; Powder Technology 211, 65–71, 2011.
[7] Umbrajkar, S.M.; Schoenitz, M.; Dreizin, E.L.; Thermochimica Acta 451, 34-43, 2006.
[8] Wang, Y.; Jiang, W.; Zhang, X.; Liu, H.; Liu, Y.; Thermochimica Acta 512, 233–239, 2011.
[9] Wang, J.; Norman Zhou, Y.; Journal of Physics and Chemistry of Solids 72, 620–625, 2011.
[10] Conkling, J.A.; Mocella, C.; "Chemistry of Pyrotechnics: Basic Principles and Theory", Taylor & Francis Group, 2011.
[11] Kosanke, K.; Kosanke, B.J.; Von Maltitz, I.; Pyrotechnic Chemistry pp. 126, December 2004.
[12] Wang, H.; DeLisio, J.B.; Jian, G.; Zhou, W.; Zachariah, M.R.; Combustion and Flame 7, 2823–2829, 2015.
[13] Wang, H.; Jian, G.; Zhou, W.; DeLisio, J.B.; Lee, V.T.; Zachariah, M.R.; ACS Applied Materials & Interfaces 31, 17363–17370, 2015.
[14] Cheng, J.L.; Hng, H.H.; Ng, H.Y.; Soon, P.C.; Lee, Y.W.; Journal of Physics and Chemistry of Solids, 2, 90–94, 2010.
[15] Wang, H.; Jacob, R.J.; DeLisio, J.B.; Zachariah, M.R.; Combustion and Flame 180, 175–183, 2017.
[16] Dreizin, E.L.; Progress in Energy and Combustion Science 35, 141–167, 2009.
[17] Hosseini, S.G.; Sheikhpour, A.; Keshavarz, M.H.; Thermochimica Acta 626, 1–8, 2016.
[18] Shen, J.; Qiao, Z.; Zhang, K.; Wang, J.; Li. R; Appl. Therm. Eng., 62, 732–737, 2014.
[19] Davenas, A.; Solid Rocket Propulsion Technology, Pergamon Press, Oxford, 477-485, 1993.
[20] Sanders, V.E.; Asay, B.W.; Foley, T.J.; Tappan, B.C.; Pacheco, A.N.; Journal of Propulsion and Power 23, 707–714, 2007.
[21] Zhou, L.; Piekiel, N.; Chowdhury, S.; Zachariah, M.R.; Journal of Physical Chemistry 114, 14269–14275, 2010.
[22] Krishnan, S.; Haseeb, A.S.M.A.; Johan, M.R.; J. Nanopart. Res. 15, 1410-1418, 2013.
[23]*
*شیخ‌پور، علی؛ حسینی، سید قربان؛ کشاورز، محمدحسین؛ توانگر روستا، سعید؛ مجله علمی-پژوهشی مواد پرانرژی، 33، 78-69. بهار 1396.
[24] Granier, J.J.; Pantoya, M.L; Combustion and Flame 138, 373–383, 2004.
[25] Hosseini, S.G.; Pourmortazavi, S.M.; Hajimirsadeghi, S.S.; Combustion and Flame 14, 322–326, 2005.
[26] Chambers, C.; Holliday, A.K.; "Modern inorganic chemistry", Butterworth & Co, England, 1975.
[27] Jian, G.; Chowdhury, S.; Sullivan, K.; Zachariah, M.R; Combustion and Flame 160, 432–437, 2013.
[28] Kim, J.Y.; Rodriguez, J.A.; Hanson, J.C.; Frankel, A.I.; Lee, P.L.; J. Am. Chem. Soc., 125, 10684–10692, 2003.
[29] Davin, G.; Central European Journal of Energetic Materials 7(2), 115-129, 2010.
[30] Malchi, J.Y.; Yetter, R.A.; Foley, T.J.; Son, S.; Combustion Science and Technology, 180, 1278 –1294, 2008.
[31] Dreizin, E.L.; Progress in Energy and Combustion Science 35, 141–167, 2009.
[32] Fathollahi, M.; Pourmortazavi, S.M.; Hosseini, S.G.; Combustion and Flame 138, 304–306, 2004.
[33] Griffiths, D.M.; Oliver, J.A.; Combustion and Flame 24, 21–25, 1975.
[34] Walker, J.D. Ph.D. Thesis, Georgia Institute of Technology, USA, 2007.
[35] Eslami, A.; Hosseini, S.G.; Journal of Thermal Analysis and Calorimetry 104, 671-678, 2011.
[36] Kissinger, H.E.; Journal of Research of the National Bureau of Standards 57, 217–221, 1956.
[37] Kissinger, H.E.; Analytical Chemistry 29, 1702–1706, 1975.
[38] Akahira, T.; Sunose, T.; Chiba Institute of Technology 16, 22–31, 1971.