شبیه‌سازی افزایش بازده تولید الفین‌های سبک از متانول با استفاده از کاتالیست زئولیتی HZSM-5

نوع مقاله : پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران

2 لیسانس، دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، شهر جدید سهند، تبریز، ایران

چکیده

 الفین‌های سبک (اتیلن، پروپیلن و بوتیلن) می‌توانند به‌صورت مستقل از منابع نفتی و با استفاده از متانول تولید شوند. در این پژوهش، کاتالیست HZSM-5 به روش آب‌گرمایی تهیه‌شده و با روش‌های پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی (FE-SEM)، جذب-واجذب نیتروژن (BET)، طیف‌سنجی فروسرخ تبدیل فوریه (FT-IR) و جذب-واجذب آمونیاک (NH3-TPD) شناسایی شد. کاتالیست دارای ریخت‌شناسی میکروکره بود که منجر به ایجاد ساختار مزو حفره و تسهیل فرایند نفوذ شد. براساس نتایج تعیین مشخصه، کاتالیست دارای بلورینگی و مساحت سطح بالا و ویژگی اسیدی مناسب بود. نتایج نشان داد که مقدار تبدیل متانول در حضور این کاتالیست بالا (5/99 %) و گزینش‌پذیری آن برای الفین‌های سبک بالا (82 %) بود. همچنین، طول عمر کاتالیست (72ساعت( به‌نسبت بالا بود. به منظور بهبود بیشتر بازده تولید، واکنش‌ها و سینیتیک‌های مناسب منطبق بر عملکرد کاتالیست تعیین و فرایند تبدیل متانول به الفین‌ها (MTO) شبیه‌سازی شد. نتایج شبیه‌سازی و آزمایش‌های تجربی همخوانی بسیار خوبی نشان دادند. با بهینه‌سازی عامل‌های سینیتیکی و عملیاتی فرایند MTO، مقدار تبدیل متانول به 100 % و گزینش‌پذیری کاتالیست برای الفین‌های سبک به 1/94 % افزایش پیدا کرد. بررسی عملکرد کاتالیست برای فرایند MTO در شرایط عملیاتی بهینه به‌دست آمده نیز نتایج شبیه‌سازی را تأیید کرد که نشانگر کاربردی بودن شبیه‌سازی و بهینه‌سازی انجام‌شده است.  

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of increasing of light olefins production yield from methanol using HZSM-5 zeolite catalysis

چکیده [English]

Light olefins (ethylene, propylene, and butylene) can be produced from methanol through non-oil route. In this study, HZSM-5 catalyst was synthesized by hydrothermal method and characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), N2 adsorption-desorption (BET), Fourier transform infrared spectroscopy (FT-IR), and NH3 temperature programmed desorption (NH3-TPD) analysis. The catalysis included microsphere morphology which led to mesoporous structure formation and acceleration of diffusion. Based on characterization, the catalysis represented high crystallinity, high surface area and appropriate acidity properties. The results showed that the catalysis provided high methanol conversion (99.5%), selectivity of light olefins (82%), and long-term catalytic lifetime (72h). In order to increase the production yield, suitable reaction groups and kinetics in consistent with the catalysis performance was determined and methanol to olefin (MTO) process was simulated. The simulation results showed well agreement with the experimental data. Optimization of kinetic and operational parameters of MTO resulted in high methanol conversion and light olefins selectivity as 100 % and 94.1 %, respectively. The catalysis performance in the MTO process under the optimized operational conditions was confirmed the simulation results which indicated practicality of applied simulation and optimization

کلیدواژه‌ها [English]

  • Olefin
  • catalyst
  • Simulation
  • Optimization. ZSM-5
[1] Tian, P.; Wei, Y.; Ye, M.; Liu, Z.; ACS Catalysis 5, 1922-1938, 2015.
[2] Rostamizadeh, M.; Taeb, A.; Journal of Industrial and Engineering Chemistry 27, 297-306, 2015.
[3] Wang, Y.; Ma, J.; Ren, F; Du, J.; Li, R.; Microporous and Mesoporous Materials 240, 22-30, 2017.
[4] Sedighi, M.; Ghasemi, M.; Sadeqzadeh, M.; Hadi, M.; Powder Technology 291, 131-139, 2016.
[5] Wei, R.; Li, C.; Yang, C., Shan, H., Journal of Natural Gas Chemistry, 20, 261-265, 2011.
[6] Rostamizadeh, M.; Yaripour, F.; Journal of the Taiwan Institute of Chemical Engineers 71, 454-463, 2017.
[7] Freiding, J.; Kraushaar-Czarnetzki, B.; Applied Catalysis A: General 391, 254-260, 2011.
[8] Sun, C.; Du, J.; Liu, J.; Yang, Y.; Ren, N.; Shen, W.; Xu, H.; Tang, Y.; Chemical Communications 46, 2671-2673, 2010.
[9] Rostamizadeh, M.; Taeb, A.; Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 46, 665-671, 2016.
[10] Rostami, R.B.; Lemraski, A.S.; Ghavipour, M.; Behbahani, R.M.; Shahraki, B.H.; Hamule, T.;, Chemical Engineering Research and Design 106, 347-355, 2016.
[11] Sedighi, M.; Bahrami, H.; Towfighi, J.; Journal of Industrial and Engineering Chemistry 20, 3108-3114, 2014.
[12] Hadi, N.; Niaei, A.; Nabavi, S.R.; Farzi, A.; Shirazi, M.N.; Chemical and Biochemical Engineering Quarterly 28, 53-63, 2014.
[13] Chen, L.; Zhu, S.Y.; Wang, Y.M.; He, M.Y.; New Journal of Chemistry 34, 2328-2334, 2010.
[14] Rostamizadeh, M.; Yaripour, F.; Fuel 181, 537-546, 2016.
[15] Gil, B.; Mokrzycki, Ł.; Sulikowski, B.; Olejniczak, Z.; Walas, S.; Catalysis Today 152, 24-32, 2010.
[16] O'Malley, A.J.; Parker, S.F.; Chutia, A.; Farrow, M.R.; Silverwood, I.P; Garcia-Sakai, V.; Catlow, C.R.A.; Chemical Communications 52, 2897-2900, 2016.
[17] Campbell, S.M.; Jiang, X.Z.;Howe, R.F.; Microporous and Mesoporous Materials 29, 91-108, 1999.
[18] Phung, T.K.; Radikapratama, R.; Garbarino, G.; Lagazzo, A.; Riani, P.; Busca, G.; Fuel Processing Technology 137, 290-297, 2015.
[19] Yaripour, F.; Shariatinia, Z.; Sahebdelfar, S.; Irandoukht, A.; Microporous and Mesoporous Materials 203, 41-53, 2015.
[20] Hosseininejad, S.; Afacan, A.; Hayes, R.E.; Chemical Engineering Research and Design 90, 825-833, 2012.
[21] Xu, A.; Ma, H.; Zhang, H.;Ying, W.; Fang, D.; Polish Journal of Chemical Technology 15, 95-101, 2013.
[22] Bleken, F.L.; Barbera, K.; Bonino, F.; Olsbye, U.; Lillerud, K.P.; Bordiga, S.; Beato, P.; Janssens, T.V.W.; Svelle, S.; Journal of Catalysis 307, 62-73, 2013.
[23] Bjorgen, M.; Svelle, S.; Joensen, F.; Nerlov, J.; Kolboe, S.; Bonino, F.; Palumbo, L.; Bordiga, S.; Olsbye, U.; Journal of Catalysis 249, 195-207, 2007.
[24] Svelle, S.; Olsbye, U.; Joensen, F.; Bjørgen, M.; The Journal of Physical Chemistry C 111, 17981-17984, 2007.
[25] Gayubo, A.G.; Aguayo, A.T.; Alonso, A.; Atutxa, A.; Bilbao, J.; Catalysis Today 106, 112-117, 2005.
[26] Soltanali, S.; Halladj, R.; Rashidi, A.M.; Bazmi, M.; Bahadoran, F.; Chemical Engineering Research and Design 106, 33-42, 2016.
[27] Ying, L.; Yuan, X.; Ye, M.; Cheng, Y.; Li, X.; Liu, Z; Chemical Engineering Research and Design 100, 179-191, 2015.