بازشناختی دوپامین با استفاده از دوپار کینون–هیدروکینون کالیکس[4]آرن

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکترای شیمی آلی، گروه شیمی، واحد علوم وتحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد شیمی آلی، گروه شیمی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

3 استاد شیمی آلی، گروه شیمی، واحد علوم وتحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

4 دانشیار شیمی آلی، پژوهشگاه شیمی ومهندسی شیمی ، تهران، ایران

5 دانشیار شیمی آلی، گروه شیمی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

در این پژوهش، یک کالیکس دوپار بدون پل جدید، با یک راهبرد نو، شرایط مناسب و راحت تهیه‌شده است. دوپار کینون- هیدروکینون کالیکس[4]آرن(4) از واکنش مشتق منوکینون کالیکس[4]آرن(3) درحضور کاتالیست مس استات (II) و 1و4- دی‌آمینوبوتان تهیه و ساختار دوپار به‌دست آمده با روش‌های متفاوت طیف‌سنجی ازجمله IR،13CNMR،1HNMR و MS موردبررسی و تأیید قرار گرفت. ازآن‌جایی‌که مولکول‌های درشت‌حلقه و به‌ویژه مشتق‌های کالیکس[4]آرن‌ها گیرنده‌های مناسبی برای بازشناسایی مولکول‌های طبیعی هستند، از ترکیب تهیه‌شده به این منظور استفاده شد. همچنین، به دلیل نقش کلیدی که دوپامین در عملکرد قلب، عروق و سامانه عصبی مرکزی دارد، این ترکیب به‌عنوان مهمان انتخاب شد. ثابت تشکیل کمپلکس بین ترکیب 4 (میزبان) و دوپامین (مهمان) با استفاده از طیف‌سنج فلورسانس محاسبه شد. داده‌های به‌دست آمده افزون‌بر آن که به‌خوبی نشان‌دهنده توانایی دوپار تهیه‌شده در شناسایی انتخابی دوپامین است، از تکرارپذیری مناسبی نیز برخوردار بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Dopamine recognition using Quinone–Hydroquinone calix[4]arene dimer

چکیده [English]

In this research, with a new strategy and convenient conditions, a novel bridgeless calix dimer was synthesised. Quinone- Hydroquinone calix[4]arene (4) was synthesised from calixquinone derivative in the presence of copper (II) acetate and 1,4- diaminobutane. The obtained dimer structure was characterised by various spectroscopic methods such as 1H-NMR, 13C-NMR, and IR spectroscopies. Since the macrocyclic molecules and in particular, calix[4]arene macrocycle derivatives, have wide usage as suitable receptors for recognising natural molecules. So, the synthesized compound was used. Also, the sole role of dopamine in central nervous and cardiovascular systems made it to be chosen as a guest molecule. The formation complex constant between Quinone-Hydroquinone calix[4]arene (4) as host and dopamine (guest) was calculated by fluorescence spectroscopy. The results indicated that the synthesized dimer (4) had not only a good ability to be the selective recognition of dopamine but also an appropriate repeatability.

کلیدواژه‌ها [English]

  • Calix[4]arenes
  • Calix[4]arene dimers
  • Calixquinones
  • Recognition of biologically active molecules
  • Dopamine
[1] Lehn, J.M.; “Supramolecular Chemistry”, Wily-VCH verlag GmbH, Germany, 1995.
[2] Rotello, V.M.; Thayumanavan, S.; “Molecular Recognition and Polymers”, John Wiely & Sons, United States, 2008.
[3] Zadmard, R.; AkbariMoghaddam, P.; Darvishi, S.; MirzaAghayan, M.; European Journal of Organic Chemistry 2016, 3894-3899, 2016.
[4] Seed, J.W.; Atwood, J.L.; “Supramolecular Chemistry”, John Wiely & Sons, Chichester, 2000.
[5] Chawla,H.M; Singh, S.P; Tetrahedron 64, 741-748, 2008.
[6] Gutsche, C.D.; “Calixarenes Revisited”, The Royal Society of Chemistry, Cambridge, 1998.
[7] See, K.A.; Fronczek, F.R.; Watson, W.H.; Kashyap, R.P.; Gutsche, C.D.; Journal of Organic Chemistry 56 (26), 7256-7268, 1991.
[8] Gutsche, C.D.; Accounts of Chemical Research 16, 161-170, 1983.
[9] Vataj, R.; Ridaoui, H.; Louati, A.; Gabelica,V.; Steyer, S.; Mattc, D.; Journal of Electroanalytical Chemistry 519, 123-129,2002.
[10] Böhmer,V.; Angewandte Chemie 34, 713-745, 1995.
[11] Neri, P.; Bottino, A.; Cunsolo, F.; Piattelli,M.; Gavuzzo, E.; Angewandte Chemie 37, 166-169, 1998.
[12] Zadmard. R.; Schrader, T.; Angewandte Chemie 45, 2703-2706, 2006.
[13] Cheriaa, N.; Abidi, R.; Vicens, J.; Tetrahedron Letters 46, 1533-1536, 2005.
[14] Budka, J.; Dudic, M.; Lhotak, M.; Stibor, I.; Tetrahedron 55, 12647-12654, 1999.
[15] Li, M.; Ma, M.L.; Li, X.Y.; Wen, K.; Tetrahedron 65, 4639–4643, 2009.
[16] Zadmard, R.; Taghvaei-Ganjali, S.; Gorji, B.; Synthetic Communications 38, 1830-1836, 2008.
[17] Chen, C.F.; Lu, L.G.; Hu, Z.Q.; Peng, X.X.; Huang, Z.T.; Tetrahedron 61, 3853-3856, 2005.
[18] Ohseto, F.; Sakaki, T.; Araki, K.; Shinkai, S.; Tetrahedron Letters 34, 2149-2152, 1993.
[19] Sameni, S.; Jeunesse, C.; Matt, D.; Harrowfield, J.; Chemical Society Reviews 38, 2117–2146, 2009.
[20] Bottino, A.; Consoli, G.M. L.; Cunsolo, F.; Geraci, C.; Tedesco, C.; Antinucci, S.; Neri, P.; Journal of Inclusion Phenomena and Macrocyclic Chemistry 42, 333-336, 2002.
[21] Sanchez, I; Fragoso, A.; De Mendoza, J.; Prados, P.; Organic Letters 8, 2571-2574, 2006.
[22] Taghvaei-Ganjali, S.; Shafai, M.; Khosravi, M.; Acta Chimica Slovenica 49, 903−908, 2002.
[23] Gutsche, C.D.; Iqbal. M.; Organic Syntheses 68, 234, 1990.