تهیه داروی رزی‌گلیتازون در مقیاس آزمایشگاهی

نوع مقاله: پژوهشی

نویسندگان

1 دانشیار شیمی آلی، دانشکده شیمی، پردیس علوم، دانشگاه تهران، ایران

2 دکترای شیمی آلی، دانشکده شیمی، پردیس علوم، دانشگاه تهران، ایران

چکیده

در این پژوهش، روشی مناسب برای تهیه داروی رزی‌گلیتازون در مقیاس آزمایشگاهی با استفاده از 4- بروموبنزآلدهید، 2،4– تیازولیدین‌دی‌ان و 2-کلروپیریدین به‌عنوان واکنشگر آورده شده است. این روش شامل چهار مرحله است که در یک مرحله کلیدی آن کمپلکس‌های فلز حدواسط پالادیم به‌کارگرفته شده است که موجب افزایش چشمگیر کارایی و بازده کلی واکنش نسبت به روش‌های پیشین می‌شود. در مرحله نخست این روش، از واکنش 2-کلروپیریدین و N-متیل‌اتانول‌آمین حدواسط 2-(متیل(پیریدین-2-ایل)آمینو) اتان-1-آل به‌دست می‌آید که به‌راحتی جداسازی و در حضور پالادیم استات و 4-بروموبنزآلدهید به 4-(2-(متیل(پیریدین-2-ایل)آمینو)اتوکسی) بنزآلدئید تبدیل می‌شود. این مرحله کلیدی در روش تهیه، در حضور یک مول درصد از کاتالیست انجام می‌شود. از واکنش -(2-(متیل(پیریدین-2-ایل)آمینو)اتوکسی) بنزآلدئید با 2،4– تیازولیدین‌دی‌اون و سپس واکنش کاهش، داروی رزی‌گلیتازون به‌دست می‌آید که به‌راحتی جداسازی و خالص‌سازی می‌شود. در انجام مرحله کاهش، کبالت(II) کلرید و دی‌متیل‌گلی‌اکسیم نقش بسیار موثری در افزایش کارایی و بازده واکنش دارند. همه مراحل واکنش در شرایط ملایم انجام می‌شوند. 

کلیدواژه‌ها


[1] Shlomo, M.; Kenneh, P.; Larsen, P.R.; Kronenberg, H.; “Williams Textbook of Endocrinology”, 12 ed.; 1371–1435, Saunders 2011.
[2] Smyth, S.; Heron, A.; Nat. Med. 12, 75– 80, 2006.
[3] Lult, R.; Minkowski, O.; Diabetologia. 32, 399- 401, 1989.
[4] Shah, S.N.; Asian J. Diabetol. 2, 11, 2000.
[5] Ross, A.; Gulve, A.; Wang, M.; Chem. Rev. 104, 1255- 1282, 2004.
[6] Yoshioka, T.; Fujita, T.; Kanai, T.; Aizawa, Y.; Kurumada, T.; Hasegawa, K.; Horikoshi, H.; J. Med. Chem. 32, 421- 428, 1989.
[7] Momose, Y.; Meguro, K.; Ikeda, H.; Hatanka, C.; Oi, S.; Sohda, T.; Chem. Pharm. Bull. 39, 1440-1445, 1991.
[8] Cantello, B.C.C.; Cawthorne, M.A.; Cottam, G.P.; Duff, P.T.; Haigh, D.; Hindley, R.M.; Lister, C.A.; Smith, S.A.; Thurlby, P.L.; J. Med. Chem. 37, 3977-3985, 1994.
[9] Xu, Sh.; Guan, Q.; Wang, Ch.; Wei, X.; Chen, X.; Zheng, B.; An, P.; Zhang, J.; Chang, L.; Zhou, W.; Neurosci. Lett. 578, 7-11, 2014.
[10] Torres, D.M.; Jones, F.J.; Shaw, J.C.; Williams, Ch.D.; Ward, J.A.; Harrison, S.A.; Hepatology 54, 1631-1639, 2011.
[11] Kim, D.H.; Lee, G.Ch.; Kim, C.H.; Oh, S.W.; Han, K.H; Han, S.Y.; Biomed. Res. 28, 463-467, 2017.
[12] Cho, R.L.; Lin, W.N.; Wang, Ch.Y.; Yang, Ch.Ch.; Hsiao, L.D.; Lin, C.Ch.; Yang, Ch.M.; Biochem. Pharmacol. 148, 222-237, 2018.
[13] Wang, H-Y.; Zhang, Y.; Zhou, Y.; Lu, Y-Y.; Wang, W-F.; Xin, M.; Guo, X-L.; Biomed. Pharmacother., 83, 349-361, 2016.
[14] Anwar, F.; Mushtaq, G.; Kazmi, I.; Afzal, M.; Khan, R.; Al-Abbasi, F.A.; Ahmad, A.; Kumar, V.; RSC Adv. 5, 68385-68391, 2015.
[15] Lv, H.P.; Zhu, Y.; Tan, J.F.; Guo, L.; Dai, W.D.; Lin, Zh.; J. Funct. Foods. 19, 194-203, 2015.
[16] Sundaresan, A.; Radhiga, Th.; Pugalendi, K.V.; Eur. J. Pharmacol. 741, 297-303, 2014.
[17] Yao, J.; Zheng, K.; Zhang, X.; Mol. Medi. Rep., 12, 6591-6597, 2015.
[18] Liu, H.; Rose, M.E.; Culver, Sh.; Ma, X.; Dixon, C.E.; Graham, S.H.; Biochem. Biophys. Res. Commun. 472, 648-655, 2016.
[19] Chiang, M.Ch.; Nicol, Ch.J.; Cheng, Y.Ch.; Lin, K.H.; Yen, Ch.H.; Lin, Ch.H.; Neurobio. Aging. 40, 181-190, 2016.
[20] Nissen, S.E.; Wolski, K.; Arch. Intern. Med. 170, 1191-1201, 2010.
[21] El-Bassossy, H.M.; Abo-Warda, Sh.M.; Fahmy, Ahmed.; Clin. Exp. Pharmacol. Physiol. 39, 643-649, 2012.
[22] Brummond, K.M.; Lu, J.; J. Org. Chem. 64, 1723- 1726, 1999.
[23] Li, X.; Abell, C.; Warrington, B.H.; Ladlow, M.; Org. Biomol. Chem. 1, 4392- 4395, 2003.
[24] Gaonkar, S.L.; Shimizu, H.; Tetrahedron 66, 3314- 3317, 2010.
[25] Jawale, D.V.; Pratap, U.R.; Mane, R.A.; Bioorg. Med. Chem. Lett. 22, 924- 928, 2012.
[26] Meng, G.; Zheng, M.; Dong, M.; Gao, Y.; Zheng, A.; Li, Zh.; Hu, R.; Res. Chem. Intermed. 42, 2023–2033, 2016.
[27] Deng, Q.; Zhang, Y.; Zhu, H.; Tu, T.; Chem. Asian. J. 12, 2364- 2368, 2017.