کاربردهای کاتالیستی ترکیب‌های فسفرآمیدی

نوع مقاله: مروری

نویسندگان

1 گروه صنایع معدنی و کاتالیستها، پژوهشکده فناوری های شیمیایی، سازمان پژوهشهای علمی و صنعتی ایران، تهران، ایران

2 استادیار گروه صنایع آلی و دارویی، پژوهشکده فناوری‌های شیمیایی، سازمان پژوهش‌های علمی و صنعتی ایران، تهران، ایران

3 دانشجوی دکتری گروه صنایع معدنی و کاتالیست‌ها، پژوهشکده فناوری‌های شیمیایی، سازمان پژوهش‌های علمی و صنعتی ایران، تهران، ایران

چکیده

فسفرآمیدها گروه مهمی از ترکیب‌های ارگانوفسفره هستند که با توجه به ویژگی‌های ساختاری خود کاربردهای فراوانی در صنایع متفاوت دارند. لیگاندهای فسفرآمیدی و کمپلکس‌های فلزی آن‌ها می‌توانند کاتالیست‌های بسیار کارآمدی برای انواع واکنش‌های شیمیایی مانند کاهش ترکیبات کربنیل‌دار و افزودن ترکیب‌های روی دی‌آلکیل به آن‌ها، آمین‌دارشدن و آلکیل‌دارشدن آلیلی، آلیل‌دارشدن نامتقارن، اپوکسیددارشدن، ترانس استریشدن، جفت‌شدن پیناکول، بسپار، واکنش‌های آلدولی و فریدل-کرافتس باشند. در این مقاله مروری، فعالیت کاتالیستی ترکیب‌های گفته‌شده در واکنش‌های متفاوت موردبررسی قرار گرفت. در کار حاضر، ضمن گردآوری و معرفی کاتالیست‌های فسفرآمیدی و واکنش‌های کاتالیست شده، اثر عامل‌های متفاوت مانند نوع و ساختار کاتالیست، دما و افزودنی بر سرعت و بازده بررسی شد. همچنین، در مورد برخی از واکنش‌ها، مطالعات سینتیکی نیز انجام گرفت. بررسی‌ها نشان‌دهنده آن بود که بازده و گزینش‌پذیری قابل‌قبول در خصوص کاتالیست‌های فسفرآمیدی، با بهینه‌سازی عامل‌های مؤثر در واکنش‌ها، مانند دما، حلال و مقدار کاتالیست قابل دستیابی است.

کلیدواژه‌ها


[1] Gholivand, K.; Oroujzadeh, N.; Main Group Chemistry 7, 251–269, 2008.
[2] Oroujzadeh, N.; Gholivand, K.; Rezaei Jamalabadi, S.; Polyhedron 122, 29–38, 2017.
[3] Oroujzadeh, N.; Delpazir, E.; Shariatinia, Z; Particulate Science and Technology 20, 1–7, 2018.
[4] Gholivand, K.; Shariatinia, Z.; Oroujzadeh, N.; Heteroatom Chemistry 24, 404–412, 2013.
[5] Oroujzadeh, N.; Rezaei Jamalabadi, S.; Phosphorus, Sulfur, and Silicon and the Related Elements 191, 1501–1503, 2016.
[6] Oroujzadeh, N.; Delpazir, E.; Phosphorus, Sulfur, and Silicon and the Related Elements 191, 1467–1469, 2016.
[7] Oroujzadeh, N.; Gholivand, K.; Phosphorus, Sulfur, and Silicon and the Related Elements 191, 1274–1279, 2016.
[8] Oroujzadeh, N.; Gholivand, K.; Journal of the Iranian Chemical Society 13, 847–857, 2016.
[9] Oroujzadeh, N.; Rezaei Jamalabadi, S.; Phosphorus, Sulfur, and Silicon and the Related Elements 191, 1572–1573, 2016.
[10] Gholivand, K.; Oroujzadeh, N.; Shariatinia, Z.; Heteroatom Chemistry 21, 168–180, 2010.
[11] Oroujzadeh, N.; Gholivand, K.; Shariatinia, Z.; Phosphorus, Sulfur, and Silicon and the Related Elements 188, 183–191, 2013.
[12] Gholivand, K.; Oroujzadeh, N.; Erben, M.F.; Della Védova, C.O.; Polyhedron 28, 541–547, 2009.
[13] Gholivand, K.; Oroujzadeh, N.; Shariatinia, Z.; Journal of Chemical Sciences 122, 549–559, 2010.
[14] Gholivand, K.; Oroujzadeh, N.; Main Group Chemistry 7, 251–269, 2008.
[15] Gholivand, K.; Mostaanzadeh, H.; Shariatinia, Z.; Oroujzadeh, N.; Main Group Chemistry 5, 95–109, 2006.
[16] Berlicki, L.; Kafarski, P.; Pesticide Biochemistry and Physiology 73, 94–103, 2002.
[17] Mallender, W.D.; Szegletes, T.; Rosenberry, T.L.; Biochemistry 39, 7753–7763, 2000.
[18] Pang, Y.; M.Kollmeyer, T.; Hong, F.; Lee, J.; Hammond, P.; Haugabouk, S.; Brimijoin, S.; Chemistry & Biology 10, 491–502, 2003.
[19] Baldwin, A.; Huang, Z.; Jounaidi, Y.; Waxman, D. J.; Archives of Biochemistry and Biophysics 409, 197–206, 2003.
[20] Gholivand, K.; Oroujzadeh, N.; Rajabi, M; Journal of the Iranian Chemical Society, 9, 865–876, 2012.
[21] Gholivand, K.; Molaei, F.; Oroujzadeh, N.; Inorganica Chimica Acta 423, 107–116, 2014.
[22] Gholivand, K.; Oroujzadeh, N.; Afshar, F.; Journal of Organometallic Chemistry 695, 1383–1391, 2010.
[23 Gubina, K.E.; Ovchynnikov, V.A.; Amirkhanov, V.M.; Fischer, H.; Stumpf, R.; Skopenko, V.V.; Zeitschrift für Naturforschung B, 55, 576–582, 2000.
[24] Trush, V.A.; Domasevitch, K.V.; Amirkhanov, V.M.; Sieler, J.; Zeitschrift für Naturforschung B, 54, 451–455, 1999.
[25] Amirkhanov, O.V.; Moroz, O.V.; Znovjyak, K.O.; Sliva, T.Y.; Penkova, L.V.; Yushchenko, T.; Szyrwiel, L.; Konovalova, I.S.; Dyakonenko, V.V.; Shishkin, O.V.; Amirkhanov, V.M.; European Journal of Inorganic Chemistry 20, 3720–3730, 2014.
[26] Shen, B.; Huang, H.; Bian, G.; Zong, H.; Song, L.; Chirality 25, 561–566, 2013.
[27] Hatano, M.; Miyamoto, T.; Ishihara, K.; Organic Letters 9, 4535–4538, 2007.
[28] Huang, H.; Zong, H.; Bian, G.; Yue, H.; Song, L.; Journal of Organic Chemistry 79, 9455–9464, 2014.
[29] Liu, Y.-L.; Zhou, F.; Cao, J.-J.; Ji, C.-B.; Ding, M.; Zhou, J.; Organic & Biomolecular Chemistry8, 3847–3850, 2010.
[30] Gao W.M.; Yu, J.S.; Zhao, Y.L.; Liu, Y.L.; Zhou, F.; Wu, H.H.; Zhou, J.; Chem. Commun. 50, 15179–15182, 2014.
[31] Yu, J.-S.; Liao, F.M.; Gao, W.-M.; Liao, K.; Zuo, R.L.; Zhou, J.; Angewandte Chemie International Edition 54, 7381–7385, 2015.
[32] Hatano, M.; Mizuno, T.; Ishihara, K.; Synlett. 2010, 2024–2028, 2010.
[33] Hatano, M.; Mizuno, T.; Ishihara, K.; Chemical Communications 46, 5443–5445, 2010.
[34] Hatano, M.; Mizuno, T.; Ishihara, K.; Tetrahedron 67, 4417–4424, 2011.
[35] Hatano, M.; Gouzu, R.; Mizuno, T.; Abe, H.; Yamada, T.; Ishihara, K.; Catalysis Science & Technology1, 1149–1158, 2011.
[36] Huang, H.; Zong, H.; Bian, G.; Song, L.; The Journal of Organic Chemistry 77, 10427–10434, 2012.
[37] Zong, H.; Huang, H.; Bian, G.; Song, L.; Tetrahedron Letters 54, 2722–2725, 2013.
[38] Yue, H.; Huang, H.; Bian, G.; Zong, H.; Li, F.; Song, L.; Tetrahedron: Asymmetry 25, 170–180, 2014.
[39] Huang, H.; Zong, H.; Shen, B.; Yue, H.; Bian, G.; Song, L.; Tetrahedron 70, 1289–1297, 2014.
[40] Sheldon, R.A.; “Metal-Catalysed Epoxidations of Olefins with Hydroperoxides,” in Aspects of Homogeneous Catalysis, Springer, Netherlands, 3–70, 1981.
[41] Mimoun, H.; “Transition-metal peroxides-synthesis and use as oxidizing agents,” in Peroxides, John Wiley & Sons, Ltd., UK, 463–482, 1983.
[42] Hoegaerts, D.; Sels, B.F.; De Vos, D.E.; Verpoort, F.; Jacobs, P.A.; Catalysis Today 60, 209–218, 2000.
[43] Denmark, S.E.; Wong, K.T.; Stavenger, R.A.; Journal of the American Chemical Society 119, 2333–2334, 1997.
[44] Li, G.; Wei, H.X.; Willis, S.; Tetrahedron Letters 39, 4607–4610, 1998.
[45] Xu, L.H.; Kündig, E.P.; Helvetica Chimica Acta 77, 1480–1484, 1994.
[46] Kobayashi, S.; Nishio, K.; Tetrahedron Letters 34, 3453–3456, 1993.
[47] Meinwald, J.; Journal of Chemical Education 42, 899-910, 1965.
[48] Davis, F.A.; Sheppard, A. C.; Chen, B. C.; Haque, M.S.; Journal of the American Chemical Society 112, 6679–6690, 1990.
[49] Brown C.A.; Yamaichi, A.; J. Chem. Soc., Chem. Commun. 3, 100–101, 1979.
[50] Corey, E.; Clark, D.; Goto, G.; Marfat, A.; Mioskowski, C.; Samuelsson, B.; Hammarstrom, S.; Journal of the American Chemical Society 102, 10, 3663–3663, 1980.
[51] Mitzel, N.W.; Lustig, C.; Journal of the Chemical Society, Dalton Transactions 18, 3177–3183, 1999.
[52] Burns, B.; Studley, J. R.; Wills, M.; Tetrahedron Letters 34, 7105–7106, 1993.
[53] Du, D.M.; Fang, T.; Xu, J.; Zhang, S.W.; Organic Letters 8, 1327–1330, 2006.
[54] Basavaiah, D.; Reddy, G.J.; Chandrashekar, V.; Tetrahedron: Asymmetry 12, 685–689, 2001.
[55] Hatano, M.; Miyamoto, T.; Ishihara, K.; Synlett. 20, 1762–1764, 2006.
[56] Li, F.; Huang, H.; Zong, H.; Bian, G.; Song, L.; Tetrahedron Letters 56, 2071–2076, 2015.
[57] Huang, H.; Zong, H.; Bian, G.; Song, L.; The Journal of Organic Chemistry 80, 12614–12619, 2015.
[58] Nemoto, T.; Hitomi, T.; Nakamura, H.; Jin, L.; Hatano, K.; Hamada, Y.; Tetrahedron: Asymmetry 18, 1844–1849, 2007.
[59] Nemoto, T.; Fukuda, T.; Matsumoto, T.; Hitomi, T.; Hamada, Y.; Advanced Synthesis & Catalysis 347, 11–13, 1504–1506, 2005.
[60] Harada, T.; Nemoto, T.; Jin, L.; Hamada, Y.; Chemical & Phamaceutical Bulletin 59, 412–415, 2011.
[61] Denmark S. E.; Collins, W. R.; Organic Letters 9, 3801–3804, 2007.
[62] Denmark, S.E.; Pham, S.M.; Stavenger, R.A.; Su, X.; Wong, K.T.; Nishigaichi, Y.; The Journal of Organic Chemistry 71, 3904–3922, 2006.
[63] Flowers, R.A.; Xu, X.; Timmons, C.; Li, G.; European Journal of Organic Chemistry 2004, 2988–2990, 2004.
[64] Karasik, A.A.; Naumov, R.N.; Sinyashin, O.G.; Belov, G.P.; Novikova, H.V.; Lönnecke, P.; Hey-Hawkins, E.; Dalton Trans. 10, 2209–2214, 2003.
[65] Soai, K.; Niwa, S.; Chemical Reviews 92, 833–856, 1992.
[66] Pu, L.; Yu, H.B.; Chemical Reviews 101, 757–824, 2001.
[67] Binder C.M.; Singaram, B.; Organic Preparations and Procedures International 43, 139–208, 2011.
[68] Jiang, L.; Shen, Z.; Zhang, Y.; Zhang, F.; Journal of Polymer Science Part A: Polymer Chemistry 34, 3519–3525, 2003.
[69] Xu, X.M.; Ni, X.F.; Shen, Z.Q.; Chinese Journal of Chemistry 22, 764–767, 2004.
[70] Hoare, J.P.; Journal of Chemical Education 38, 570, 1961.
[71] *
* شیروان، سید صدیف‌الله؛ حیدری‌دزفولی، سارا؛ نشریه پژوهش‌های کاربردی در شیمی 5 (1)، 39-44، 1390 (2011).
[72] Rajabi M.; Gholivand, K.; Salami, R.; Molaei, F.; Thibonnet, J.; Zare, K.; Fadaei Tirani, F.; Schenk, K.; Inorganica Chimica Acta 432, 149–157, 2015.
[73] Gelbard, G.; Gauducheau, T.; Vidal, E.; Parvulescu, V.I.; Crosman, A.; Pop, V.M.; Journal of Molecular Catalysis A: Chemical 182–183, 257–266, 2002.
[74] Gelbard, G.; Comptes Rendus de l’Académie des Sciences - Series IIC - Chemistry 3, 757–764, 2000.
[75] Blandin, V.; Carpentier, J.F.; Mortreux, A.; New Journal of Chemistry 24, 309–312, 2000.
[76] Desmurs J.R.; Ratton, S.; The roots of organic development. Amsterdam, Elsevier, 1996.
[77] *
* سعادتی، فریبا؛ آقاجانلو، هادی؛ پیری، سمیه؛ نشریه پژوهش‌های کاربردی در شیمی 11 (2)، 15-22، 1396 (2017).
[78] Rodriguez, A.A.; Yoo, H.; Ziller, J.W.; Shea, K.J.; Tetrahedron Letters 50, 6830–6833, 2009.
[79] Dessole, G.; Herrera, R.P.; Ricci, A.; Synlett. 2004, 2374–2378, 2004.
[80] Kim, S.M.; Byun, I.S.; Kim, Y.H.; Angewandte Chemie 112, 744–747, 2000.