طراحی داربست هیبریدی متخلخل برپایه چندسازه PEPC اصلاح‎شده با کیتوسان به منظور کاربرد در مهندسی بافت نرم: بررسی شباهت های ساختاری و رفتار زیست مکانیکی

نوع مقاله: پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی شیمی دانشگاه آزاد اسلامی، واحد آیت ا... آملی ، آمل، ایران

2 دانشیار گروه مهندسی شیمی، دانشگاه آزاد اسلامی، واحد آیت ا... آملی، آمل، ایران

3 استادیار گروه مهندسی بافت و علوم سلولی کاربردی، دانشگاه علوم پزشکی شهید بهشتی، تهران ، ایران

4 استاد گروه نانوبیوتکنولوژی، انسیتو پاستور ایران، تهران، ایران

چکیده

 امروزه، مهندسی بافت به‌عنوان یکی از روش‎های درمانی مؤثر برای ترمیم بافت‌های نرم و سخت شناخته می‌شود. اگرچه که طراحی بسترهایی که پیروی‎کننده الگوی رشد سلول و عملکرد زیست‎مکانیکی بافت هستند، چالشی مهم در این زمینه به‎حساب می‎آیند. در پژوهش حاضر، به‎منظور بررسی نقش ترکیب بسپارهای طبیعی و مصنوعی در پیروی محیط‌های زیستی، داربست‌های متخلخل PEPC ا(PEG/PCL) و
PCPا(PEG/کیتوسان/PCL) با روش خشک‎کردن انجمادی طراحی شد. سپس، ویژگی فیزیکوشیمیایی، مکانیکی و زیستی داربست‌های یاد شده با دیگر داربست‌های طراحی‎شده (کیتوسان، PEG و PCL) مورد مقایسه و بررسی قرار گرفت. نتایج نشان داد که ترکیب بسپارها (طبیعی/مصنوعی)، نقش اصلی را در ایجاد میکرومحیط متخلخل و کشسانی مشابه با بستر خارج سلولی بافت ایفا می‌کند. به‌طوری که، داربست هیبریدی PCP در مقایسه با داربست چندسازه PEPC، تخلخل بیشتر (با قطر منافذ کمتر) و مدول کشش مشابه با بافت نرم (MPa 5/11) را ارائه داد. افزون ‎بر آن، حضور کیتوسان در داربست PCP منجر به افزایش تورم‌پذیری، کنترل سرعت تخریب و بهبود رشد سلولی(96 %) نسبت به سایر گروه‎ها شد. بنابراین، به نظر می‎رسد داربست هیبریدی PCP، از طریق پیروی رفتارهای زیست‎مکانیکی و ساختاری بافت‌های نرم مانند پوست، رباط، بافت اندوتلیال و عروق خونی، می‌تواند نقش مهمی را در بازسازی بافت ایفا کند.

کلیدواژه‌ها


[1] Li, W.; J. Med. Biol. Eng. 36, 285–307, 2016.
[2] Daley, W.P.; Peters, S.B.; Larsen, M.; J. Cell Sci. 121, 255–64, 2008.
[3] Furukawa, K.S.; "2016 International Symposium on Micro-NanoMechatronics and Human Science", Proceedings of a meeting held 28-30 November 2016, Nagoya, Japan, IEEE, Japan, 2017.
[4]    Caddeo, S.; Boffito, M.; Sartori, S.; Front. Bioeng. Biotechnol. 5, 1–22, 2017.
[5]    Chan, B.P.; Leong, K.W.; Eur. Spine J. 17, 467–479, 2008.
[6]    Samadikuchaksaraei, A.; J. Neuroeng. Rehabil. 4, 1–16, 2007.
[7]    Gu, H.; Liu, C.; Zhu, J.; Gu, J.; Wujcik, E.K.; Shao, L.; Wang, N.; Wei, H.; Scaffaro, R.; Zhang, J.; Guo, Z.; Adv. Compos. Hybrid Mater. 1, 1–5, 2018.
[8]    Bouhfid, N.; Raji, M.; Boujmal, R.; Essabir, H.; Bensalah, M.O.; Bouhfid, R.; Qaiss, A.K.; Numerical modeling of hybrid composite materials, in: "Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites", Chap. 5, Woodhead Publishing, U.K., 2019.
[9]    Pilia, M.; Guda, T.; Appleford, M.; Biomed Res. Int. 20, 1–15, 2013.
[10] Wang, Y.; Sun, N.; Zhang, Y.; Zhao, B.; Zhang, Z.; Zhou, X.; Zhou, Y.; Liu, H.; Zhang, Y.; Liu, J.; Sci. Rep. 9, 7960, 2019.
[11] Janarthanan, G.; Kim, I.G.; Chung, E.J.; Noh, I.; Biomater. Res. 23, 1-14, 2019.
[12] Parmaksiz, M.; Elcin, A.E.; Elcin, Y.M.; Mater. Sci. Eng. C. Mater. Biol. Appl. 94, 788–797, 2019.
[13] Zou, L.; Zhang, Y.; Liu, X.; Chen, J.; Zhang, Q.; Colloids Surf. B. Biointerfaces. 178, 222–229, 2019.
[14] Setayeshmehr, M.; Esfandiari, E.; Rafienia, M.; Hashemibeni, B.; Taheri-Kafrani, A.; Samadikuchaksaraei, A.; Kaplan, D.L.; Moroni, L.; Joghataei, M.; Tissue Eng. Part B Rev. 18, 0245-0256, 2019.
[15] Bagnaninchi, P.O.; Yang, Y.; El Haj, A.J.; Maffulli, N.; Bosch, U.; Br. J. Sports Med. 41, 10–22, 2007.
[16] Sigal, I.R.; Grande, D.A.; Dines, D.M.; Dines, J.; Drakos, M.; Regen. Eng. Transl. Med. 2, 107–125, 2016.
[17] Tang, X.; Thankappan, S.K; Lee, P.; Fard, S.E.; Harmon, M.D.; Tran, K.; Yu, X.; Nat. Synth. Biomed. Polym. 31, 351–371, 2014.
[18] Tan, H.; Marra, K.G.; Materials 3, 1746–1767, 2010.
[19] Hanauer, N.; Latreille, P.L.; Alsharif, S.; Banquy, X.; Curr. Pharm. Des. 21, 1506–1516, 2015.
[20] Bosworth, L.A.; Alam, N.; Wong, J.K.; Downes, S.; J. Mater. Sci. Mater. Med. 24, 1605–1614, 2013.
[21] Norouzi, M.; Boroujeni, S.M.; Omidvarkordshouli, N.; Soleimani, M.; Adv. Healthc. Mater. 4, 1114–1133, 2015.
[22] Wu, Q.; Li, L.; Wang, N.; Gao, X.; Wang, B.; Liu, X.; Qian, Z.; Wei, Y.; Gong, C.; Int. J. Nanomedicine 9, 727-734, 2014.
[23] Alshomer, F.; Chaves, C.; Kalaskar, D.M.; J. Mater. 18, 1–17, 2018.
[24] Chen, S.H.; Chen, C.H.; Shalumon, K.T.; Chen, J.P.; Int. J. Nanomedicine. 9, 4079–4092, 2014.
[25] Liu, S.; Zhao, J.; Ruan, H.; Tang, T.; Liu, G.; Yu, D.; Cui, W.; Fan, C.; Biomacromolecules. 13, 3611–3619, 2012.
[26] Ghasemi-Mobarakeh, L.; Prabhakaran, M.P.; Morshed, M.; Nasr-Esfahani, M.H.; Ramakrishna, S.; Biomaterials 29, 4532–4539, 2008.
[27] Chen, S.L.; Fu, R.H.; Liao, S.F.; Liu, S.P.; Lin, S.Z.; Wang, Y.C.; Cell Transplant. 27, 275–284, 2018.
[28] Raeber, G.P.; Lutolf, M.P.; Hubbell, J.A.; Biophys. J. 89, 1374–1388, 2005.
[29] Yuksel, E.; Semin. Plast. Surg. 19 ,261, 2005.
[30] Reddy, R.; Reddy, N.; J. Biomater. Sci. Polym. Ed.; 29, 1667–1685, 2018.
[31] Bressan, E.; Favero, V.; Gardin, C.; Ferroni, L.; Iacobellis, L.; Favero, L.; Vindigni, V.; Berengo, M.; Sivolella, S.; Zavan, B.; Polymers  3, 509–526, 2011.
[32] Stratton, S.; Shelke, N.B.; Hoshino, K.; Rudraiah, S.; Kumbar, S.G.; Bioact. Mater. 1, 93–108, 2016.
[33] García, M.C.; Aldana, A.A.; Tártara, L.I.; Alovero, F.; Strumia, M.C.; Manzo, R.H.; Martinelli, M.; Jimenez-Kairuz, A.F.; Carbohydr. Polym. 175, 75–86, 2017.
[34] Younes, I.; Rinaudo, M.; Mar. Drugs. 13, 1133–1174, 2015.
[35] Huang, R.;, Li, W.; Lv, X.,; Lei, Z.; Bian, Y.; Deng, H.; Wang, H.; Li, J.; Li, X.; Biomaterials. 53, 58–75, 2015.
[36] Shalumon, K.T.; Anulekha, K.H.; Chennazhi, K.P.; Tamura, H.; Nair, S.V.; Jayakumar, R.; Int. J. Biol. Macromol. 48, 571–576, 2011.
[37] Du, T.; Chen, Z.; Li, H.; Tang, X.; Li, Z.; Guan, J.; Liu, C.; Du, Z.; Wu, J.; Int. J. Biol. Macromol. 82, 580–588, 2016.
[38] Liu, X.; Dan, N.; Dan, W.; Gong, J.; Int. J. Biol. Macromol. 82, 989–997, 2016.
[39] Volpi, N.; Schiller, J.; Stern, R.; Soltes, L.; Curr. Med. Chem. 16, 1718–1745, 2009.
[40] Lam, J.; Truong, N.F.; Segura, T.; Acta Biomater. 10, 1571–1580, 2014.
[41] Dicker, K.T.; Gurski, L.A.; Pradhan-Bhatt, S.; Witt, R.L.; Farach-Carson, M.C.; Jia, X.; Acta Biomater. 10, 1558–1570, 2014.
[42] Klein, S.; Aung, T.; Haas, R.M.; Medved, F.; Schiller, S.M.; Felthaus, O.; Dolderer, J.H.; Handchir. Mikrochir. Plast. Chir. 50, 83–92, 2018.
[43] Maeda, N.; Miao, J.; Simmons, T.J.; Dordick, J.S.; Linhardt, R.J.; Carbohydr. Polym. 102, 950–955, 2014.
[44] Yong Lee, K.; Jeong, L.; Ok Kang, Y.; Lee, S.J.; Park, W.H.; Adv. Drug Deliv. Rev. 61, 1020–1032, 2009.
[45] Park, Y.R.; Ju, H.W.; Lee, J.M.; Kim, D.K.; Lee, O.J.; Moon, B.M.;  Park, H.J.; Jeong, J.Y.; Yeon, Y.K.; Park, C.H.; Int. J. Biol. Macromol. 93, 1567–1574, 2016.
[46] Zhao, X.; Sun, X.; Yildirimer, L.; Lang, Q.; Lin, Z.Y. (William); Zheng, R.; Zhang, Y.; Cui, W.; Annabi, N.; Khademhosseini, A.; Acta Biomater. 49, 66–77, 2017.
[47] Sachlos, E.; Czernuszka, J.T.; Gogolewski, S.; Dalby, M.; Eur. Cells Mater. 5, 29–40, 2003.
[48] Loh, Q.L., Choong, C.; Tissue Eng. Part B Rev., 19, 485–502, 2013.
[49] Salem, A.K.; Stevens, R.; Pearson, R.G.; Davies, M.C.; Tendler, S.J.B.; Roberts, C.J.; Williams, P.M.; Shakesheff, K.M.; J. Biomed. Mater. Res. 61, 212–217, 2002.
[50] Zeltinger, J.; Sherwood, J.K.; Graham, D.A.; Müeller, R.; Griffith, L.G.; Tissue Eng. 7, 557–572, 2001.
[51] O’Brien, F.J.; Harley, B.A.; Yannas, I.V.; Gibson, L.J.; Biomaterials. 26, 433–441, 2005.
[52] Verma, D.; Katti, K.S.;  Katti, D.R.; Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 2083–2097, 2010.
[53] Rodríguez-Vázquez, M.; Vega-Ruiz, B.; Ramos-Zúñiga, R.; Saldaña-Koppel, D.A.; Quiñones-Olvera, L.F.; Biomed Res. Int. 15, 1–15, 2015.
[54] Lee, S.H.; Lee, J.H.; Cho, Y.S.; Tissue Eng. Regen. Med. 11, 446–452, 2014.
[55] Mahanani, E.S.; Herningtyas, E.H.;  Bachtiar, I.; Ana, A.D.; AIP Conf. Proc. 1755, 1–8, 2016.
[56] Vazquez, O.R.; Avila, I.O.; Díaz, J.C.S.; Hernandez, E.; J. Res. Updat. Polym. Sci. 4, 168–178, 2016.
[57] Zhang, M.; Zheng, Y.P.; Mak, A.F.T.; Med. Eng. Phys. 19, 512–517, 1997.
[58] Cox, T.R.; Erler, J.T.; Dis. Model. Mech. 4, 165–178, 2011.
[59] Pal, S.; Des. Artif. Hum. Joints Organs. 97, 1–419, 2014.
[60] Lin, Y.J.; Cai, Q.; Li, Q.F.; Xue, L.W.; Jin, R.G.; Yang, X.P.; J. Appl. Polym. Sci. 115, 3393–3400, 2010.
[61] Menzies, K.L.; Jones, L.; Optom. Vis. Sci. 87, 387–399, 2010.
[62] He, Y.; Lu, F.; Stem Cells Int. 16, 1–12, 2016.
[63] Yin, H.M.; Qian, J.; Zhang, J.; Lin, Z.F.; Li, J.S.; Xu, J.Z.; Li, Z.M.; Polymers  8, 213–225, 2016.