بهبود واکنش کاهش اکسیژن در پیل سوختی با نانوالکتروکاتالیست های هیدروکسید دولایه آلومینیم و روی

نوع مقاله: پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی سیستم‌های انرژی، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

2 دانشیار، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

چکیده

 به منظور توسعه الکترو‌کاتالیست‎های فلزی کارآمد و کم‌هزینه برای واکنش کاهش اکسیژن (ORR)، در این پژوهش، ترکیب هیدروکسید دولایه آلومینیم و روی (ZnAl-LDH) با گرافن اکساید کاهش‎یافته و عامل‌دار شده با اتم‌های نیتروژن و سولفور (N,S–rGO) با روش آب‎گرمایی، مورد‎استفاده قرار گرفت. ساختار، ترکیب، ریخت و فعالیت الکتروکاتالیستی ترکیب ZnAl-LDH/N,S–rGO با به‎کارگیری آزمون‎های فیزیکی و الکتروشیمیایی بررسی و نتایج با عملکرد الکتروکاتالیستی کاتالیست تجاری Pt/C 20% مقایسه شد. برپایه نتایج آزمایش‌های فیزیکی، افزون بر یکنواخت‎بودن و لایه نشانی صحیح ساختار الکتروکاتالیست‌، اندازه ذرات نیز به گستره نانومتر رسید. برپایه نتایج الکتروشیمیایی، الکتروکاتالیست ZnAl-LDH/N,S–rGO فعالیت الکتروشیمیایی قابل‎توجه و بسیار نزدیک به کاتالیست تجاری Pt/C 20% داشت. پتانسیل آغاز  واکنش برای این نمونه V 0/01- تعیین شد. پایداری الکتروکاتالیستی در محیط قلیایی مطلوب بود. می‌توان نتیجه گرفت هیبرید هیدروکسیدهای دولایه (LDHs) و پایه‌های کربنی، رسانایی الکتریکی، فعالیت الکتروکاتالیستی، سطح فعال و پایداری را برای واکنش کاهش اکسیژن بهبود می‎دهند.

کلیدواژه‌ها


[1] Liu, B.; Bard, A.J.; J. Phys. Chem. B. 106, 12801–12806, 2002.
[2] Zhang, J.; Science & Business Media 1387, 1 - 1137, 2008.
[3] Raghuveer, Y.; Viswanathan, B.; IJEMS. 09, 137-140, 2002.
[4] Lim, B.R.; Bull. Korean Chem. Soc. 31, 1577–1582, 2010.
[5] Kongkanand, A; Kuwabata, S.; Girishkumar, G.; Kamat, P.; Langmuir 22, 2392–2396, 2006.
[6] Meng, H.; Zeng, D.; Xie, F.; Catalysts 5, 1221–1274, 2015.
[7] Wang, X.M.; Wang, M.E.; Zhou, D.D.; Xia, Y.Y.; Phys. Chem. Chem. Phys. 13, 13594–13597, 2011.
[8] Ozoemena, K.I.; RSC Adv. 6, 89523–89550, 2016.
[9] Choi, H.J.;  Jung, S.M.; Seo, J.M.; Chang, D.W.; Dai, L.; Baek, J.B.; Nano Energy 1, 534–551, 2012.
[10] Usgaocar, A.R.H.; Chong, M.H.; De Groot, C.H.; J. Nanosci. 14, 118-127, 2014.
[11] Villers, D.S.H.; Sun, A.M.; Serventi, J.P.; Desilets, S.; J. Phys. Chem. B. 51, 25916–25925, 2006.
[12] Khotseng, L.; Applications, Performance and Technology 13, 1-50, 2017.
[13] Motsoeneng, R.G.; Modibedi,R.M.; Mathe, M.K.; Khotseng, L.E.; Ozoemena, K.I.; Int. J. Hydrogen Energy 40, 16734–16744, 2015.
[14] Sharma, S.; Pollet, B.G. J. Power Sources, 208, 96–119, 2012.
[15] Yaldagard, M.; Jahanshahi, M.; Seghatoleslami, N.; World J. Nano Sci. Eng. 3 (4), 121-153, 2013.
[16] Tian, H.; J. Mater. Chem. A. 6, 10354–10360, 2018.
[17] Remona, A.M.; Phani, K.L.N.; Fuel cells 11, 385–393, 2011.
[18] Lv, D.; Kang, H.Y.; Markovic,N.M.; Stamenkovic,V.R..; Annu. Rev. Chem. Biomol. Eng. 7, 509–532, 2016.
[19] Kim, J.H.A.; Ishihara, S.; Mitsushima, N.; Ota, K.I. ; Electrochim. Acta 52, 2492–2497, 2007.
[20] Thompsett, D.; Catalysts for the Proton Exchange Membrane Fuel Cell, in: "Fuel Cell Technology Handbook", Chap. 6, CRC Press LLC, London, 2003.
[21] Gotoh, K.; Kawabata, K.; Fujii, E.; Morishige, K.; Kinumoto, T.; Miyazaki, Y.; Ishida, H.; Carbon 47(8), 2120–2124, 2009.
[22] Du,S.; Lu,Y.; Steinberger-Wilckens, R.; Carbon N.Y. 79, 346–353, 2014.
[23] Kou, R.; Electrochem. Commun. 11, 954–957, 2009.
[24] Mo, Z;. Zheng, R;. Peng, H.; Liang, H.; Liao, S.; J. Power Sources. 245, 801–807, 2014.
[25] Zhan, T.; Liu, X.; Lu, S.; Hou,W.; Appl. Catal. B Environ. 205, 551–558, 2017.
[26] Xu, X.; Yan, X.; Zhong, Z.; Kang, L.; Yao, J.; Carbon N.Y. 145, 311–320, 2019.
[27] Jeon, I.Y.; J. Am. Chem. Soc. 135, 1386–1393, 2012.
[28] Chen, S.J.; Jaroniec, M.; Qiao, S.Z.; Angew. Chemie Int. Ed. 52, 13567–13570, 2013.
[29] Osmieri, L.; Pezzolato, L.; Specchia, S.; Curr. Opin. Electrochem. 9, 240–256, 2018.
[30] Guo, J.; Shu, J.; Nie, J.; Ma, G.; J. Colloid Interface Sci. 560, 330–337, 2020.
[31] Trotochaud, L.; Ranney, J.K.; Williams, K.N.; Boettcher, S.W.; J. Am. Chem. Soc. 134, 17253–17261, 2012.
[32] Smith, R.D.L.; Science 340(6128), 60–63, 2013.
[33] Gao, M.; J. Am. Chem. Soc. 136(19), 7077–7084, 2014.
[34] Changwen, H.U.; Danfeng,L.; Yihang, G.; Enbo,W.; Chinese Sci. Bull. 46, 1061–1066, 2001.
[35] Rives, V.; Ulibarri, M.A.; Coord. Chem. Rev.181, 61–120, 1999.
[36] Vaccari, A.; Catal. Today 41, 53–71, 1998.
[37] Long , X.; Angew. Chemie Int. Ed. 53, 7584–7588, 2014.
[38] Youn, D.H.; Bin Park, Y.; Kim, J.Y.; Magesh,G.; Jang,Y.J.; Lee, J. S.; J. Power Sources. 294, 437–443, 2015.
[39] Feng, Y.;  Zhang,H;. Zhang,Y.; Li,X.; Wang,Y.; ACS Appl. Mater. Interfaces. 7, 9203–9210, 2015.
[40] Gong, M.; J. Am. Chem. Soc. 135, 8452–8455, 2013.
[41] Huang, L.; Zou, Y.; Chen, D.; Wang, S.; Chinese Journal of Catalysis 40, 1822–1840, 2019.
[42] Sun, W.; Du, L.; Du,C.; Gao,Y.; Yin,G.; Appl. Surf. Sci. 485, 41–47, 2019.
[43] Zhang, S.; Carbon N.Y. 107, 162–170, 2016.
[44] Zhou, D.; Adv. Energy Mater. 8, 1701905-1701915, 2018.
[45] Carrasco, J.A.; Sanchis-Gual, R.; Seijas-Da Silva, A.; G. Abellan, and E. Coronado, Chem. Mater 31, 6798–6807, 2019.
[46] Mota, L.; FEMS Microbiol. Lett. 2529(1), 1-20, 2005.
[47] He, S.; An, Z.; Wei, M.; Evans, D.G.; Duan, X.; Chem. Commun. 49, 5912–5920, 2013.
[48] Cao, Y.; Li, G.; Li, X.; Chem. Eng. J. 292, 207–223, 2016.
[49] Bi, X.; Zhang, H.; Dou, L.; Pharmaceutics 6, 298–332, 2014.
[50] Liu, X.; Hu, W.; RSC Adv. 6, 29848–29854, 2016.
[51] Bag, S.; Mondal, B.; Das, A.K.; Raj, C.R.; Electrochim. Acta. 163, 16–23, 2015.
[52] Li, H.; RSC Adv. 5, 9341–9347, 2015.
[53] Thevenot, F.; Szymanski, R.; Chaumette, P.; Clays Clay Miner. 37, 396–402, 1989.
[54] Hosni, K.; Srasra, E.; Inorg. Mater. 44, 742–749, 2008.