پیش‌تغلیظ و اندازه‌گیری پالادیم در نمونه‌های حقیقی با کمک لیگاند 2- مرکاپتوبنزایمیدازول به روش میکرو‎استخراج فاز مایع

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناس ارشد گروه شیمی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار گروه شیمی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

در این پژوهش، برای حذف حلال پخشی با روشی سبز، روش میکرواستخراج مایع-مایع برپایه جامدسازی قطره آلی شناور با کمک جریان گردابی (VALLME-SFO) برای میکرواستخراج و پیش تغلیظ Pd(II) پیش از سنجش غلظت آن با طیف‌سنجی جذب اتمی شعله پیشنهاد شده است. برای پیداکردن شرایط بهینه برپایه روش سطح پاسخ، از طرح مرکب مرکزی  استفاده شد. پنجمتغیر نوع و حجم حلال استخراج، pH محلول، غلظت لیگاند 2- مرکاپتوبنزوایمیدازولو مدت قرارگیری در جریان گردابی، بررسی شد. در شرایط بهینه؛pH برابر با 7، 5/1میلی‌لیتر محلول  mM 3 از 2-مرکاپتوبنزوایمیدازول، حجم 1-آندکانول برابر با 40 میکرولیتر و 5 دقیقه قرارگیری در جریان گردابی؛ حد تشخیص 3/3 میکروگرم بر لیتر و حد کمیبودن 11 میکروگرم بر لیتربا انحراف استاندارد نسبی 4/2 درصد بهدست آمد. بازیابی آنالیت در نمونه‌های 4 ایستگاه از رودخانه کرج در گستره 7/96 تا 3/103 % بود. از آزمون تحلیل وردایی(ANOVA) برای نشان دادن عدم مزاحمت بافت نمونه‌های حقیقی، استفاده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Preconcentration and determination of palladium in real samples using 2-mercaptobenzimidazole ligand by liquid phase microextraction

نویسندگان [English]

  • Narges Hemmatian 1
  • Amir Hossein Mohsen Sarrafi 2
1 Assistant Prof. in Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Assistant Prof. in Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

In this study, a novel vortex-assisted liquid-liquid microextraction based on solidification of a floating organic droplet (VALLME-SFO) was proposed for the microextraction of Pd(II) before its determination by flame atomic absorption spectrometry. A central composite design was used to find the optimum conditions for the preconcentration procedure through response surface methodology. Five variables, including type and volume of extraction solvent, solution pH, ligand concentration, and duration of vortex exposure, were investigated. Under optimum conditions, pH=7, 1.5 ml of 2-mercaptobenzimidazole 3 mM, 40 μl of 1-Undecanol, a detection, and 5 min vortex, detection limit 3.3 μg/l and quantitation limit 11 μg/l with the relative standard deviation 2.4% was achieved. The recoveries of the analytes in Karadj river samples were in the range of 96–104 %. Analysis of variance (ANOVA) was used to show lack of interferences in the matrix of real samples.

کلیدواژه‌ها [English]

  • PD
  • VA-LLME-SFO
  • CCD
  • FAAS
[1] Leopold, K.; Maier, M.; Weber, S.; Schuster, M.; Environ. Pollut.156, 341-347, 2008.
[2] Battke, F.; Leopold, K.; Maier, M.; Schmidhalter, U.; Schuster, M.; Plant Biol. (Stuttg) 10, 272-276, 2008.
[3] Ghanbarian, M.; Afzali, D.; Mostafavi, A.; Fathirad, F.; J. AOAC Int. 96, 880-886, 2013.
[4] Majidi, B.; Shemirani, F.; Talanta 93, 245-251, 2012.
[5] Eskandari, H.; Turk. J. Chem. 36, 631-643, 2012.
[6] Leśniewska, B.A.; Godlewska-Żyłkiewicz, B.; Ruszczyńska, A.; Bulska, E.; Hulanicki, A.; Anal. Chim. Acta 564, 236-242, 2006.
[7] Sivrikaya, S.; Karsli, B.; Imamoglu, M.; Int. J.  Environ. Res. 11, 1-12, 2017.
[8] Mohammadifar, E.; Shemirani, F.; Majidi, B.; J. Anal. Chem. 70, 136-142, 2015.
[9] Yavuz, E.; Tokalıoğlu, Ş.; Şahan, H.; Patat, Ş.; Talanta 128, 31-37, 2014.
[10] Bahar, S.; Hosseini, H.; J. Iran Chem. Soc. 11, 579-586, 2014.
[11] Bagheri, A.; Taghizadeh, M.; Behbahani, M.; Asgharinezhad, A.A.; Salarian, M.; Dehghan, A.; Ebrahimzadeh, H.; Amini, M.M.; Talanta 99, 132-139, 2012.
[12] Pouyan, M.; Bagherian, G.; Goudarzi, N.; Microchemical J. 127, 46-51, 2016.
[13] Ezoddin, M.; Majidi, B.; Abdi, K.; J. Mol. Liq. 209, 515-519, 2015.
[14] Citak, D.; Tuzen, M.; Desalin. Water Treat. 53, 2686-2691, 2015.
[15] Ozdemir, C.; Sacmaci, S.; Kartal, S.; Sacmaci, M.; J.  Ind. Eng. Chem. 20, 4059-4065, 2014.
[16] Saçmacl, S.; Kartal, S.; Dural, S.; J. Braz. Chem. Soc. 23, 1033-1040, 2012.
[17] Mohammadi, S.Z.; Afzali, D.; Taher, M.A.; Baghelani, Y.M.; Microchimica. Acta 168, 123-128, 2010.
[18] Ahmadzadeh Kokya, T.; Farhadi, K.; J. Hazard. Mater. 169, 726-733, 2009.
[19] Kozani, R.R.; Mofid-Nakhaei, J.; Jamali, M.R.; Environ. Monit. Assess. 185, 6531-6537, 2013.
[20] Gaubeur, I.; Aguirre, M.A.; Kovachev, N.; Hidalgo, M.; Canals, A.; Microchem. J. 121, 219-226, 2015.
[21] Tavakoli, L.; Yamini, Y.; Ebrahimzadeh, H.; Nezhadali, A.; Shariati, S.; Nourmohammadian, F.; J. Hazard. Mater. 152, 737-743, 2008.
[22] Leong, M.I.; Huang, S.D.; J. Chromatogr. A 1211, 8-12, 2008.
[23] Ebrahimi-Najafabadi, H.; Leardi, R.; Jalali-Heravi, M.; J. AOAC Int. 97, 3-11, 2014.
[24] Ebrahimi-Najafabadi, H.; Leardi, R.; Jalali-Heravi, M.; J. AOAC Int. 97, 12-18, 2014.
[25] Brereton, R.G.; Jansen, J.; Lopes, J.; Marini, F.; Pomerantsev, A.; Rodionova, O.; Roger, J.M.; Walczak, B.; Tauler, R.; Anal. Bioanal. Chem. 409, 5891-5899, 2017.
[26] Mousavi, L.; Tamiji, Z.; Khoshayand, M. R.; Talanta 190, 335-356, 2018.
[27] Talismanova, M.O.; Sidorov, A.A.; Aleksandrov, G.G.; Oprunenko, Yu.F.; Eremenko, I.L.; Moiseev, I.I.; Russ. Chem. Bull. 53, 1507-1510, 2004.
[28] Souza, A.S.; Siqueira, R.P.; Prates, R.F.; Bezerra, V.M.; Rocha, D.S.; Oliveira, M.V.; Santos, D.B.; Microchem. J. 134, 327-332, 2017.
[29] Shirinnejad, M.; Sarrafi, A.H.M.; J. Fluoresc. 23, 115-120, 2019.
[30] Ferrone, V.; Cotellese, R.; Carlucci, M.; Di Marco, L.; Carlucci, G.; J. Pharm. Biomed. Sci. 151, 266-273, 2018.
[31] Asati, A.; Satyanarayana, G.N.V.; Srivastava, V.T.; Patel, D.K.; J. Chromatogr. A 1561, 20-27, 2018.
[32] Montgomery, D.C.; “Design and analysis of experiments”, John Wiley & Sons, Inc. Hoboken, NJ; 2017.