بهینه‌سازی سنتز سبز و مشخصه‌یابی نانوذره‌های مس اکسید با عصاره آبی برگ گیاه چای ترش (Hibiscus sabdariffa L.)

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه شیمی، دانشکده علوم پایه، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استادیار گروه شیمی، دانشکده علوم پایه، دانشگاه سیستان و بلوچستان، زاهدان، ایران

3 دانشیار گروه زیست شناسی، دانشکده علوم پایه، دانشگاه سیستان و بلوچستان، زاهدان، ایران

4 دانشجوی دکترا گروه شیمی، دانشکده علوم پایه، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

       پژوهش حاضر نخستین گزارش از سنتز سبز نانوذره­های مس اکسید با به‎کارگیری عصاره آبی برگ گیاه چای ترش (Hibiscus sabdariffa L.) و مس کلرید (CuCl2. 2H2O) است. به­منظور به­دست آوردن نانوذره­ها با شکل و اندازه یکنواخت­، عامل‎های مؤثر بر سنتز مانند pH واکنش، حجم و غلظت عصاره، غلظت نمک مس (II) و زمان واکنش بررسی و همه آن­ها با روش طیف‎نورسنجی فرابنفش-مرئی (UV-Vis) بهینه شدند. میکروسکوپ الکترونی عبوری (TEM) و طیف­سنجی فروسرخ تبدیل فوریه (FT‎IR) به ترتیب برای بررسی شکل و اندازه نانوذره­ها و تشخیص گروه­های عاملی درگیر در تهیه و تثبیت نانوذره‎های مس اکسید به‎کارگرفته شدند. نتیجه­ها نشان داد که عصاره می­تواند یون­های مس (II) را به اتم­های مس با اندازه نانومتری کاهش و رنگ محلول را به سبز تغییر دهد. نانوذره­های به­دست آمده همگی کروی بودند و میانگین اندازه آن‎ها 10 تا 20 نانومتر بود. همچنین­، بهترین شرایط برای تهیه نانوذره­های مس در  pHبرابر با 8، 9 میلی‎لیتر از عصاره با غلظت 5 %  و نمک مس با غلظت 10 میلی‎مولار بود. این نانوذره‎ها در 6 روز پس از تهیه بسیار پایدار بودند.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization and Characterization of Plant-Mediated Green Synthesis of Copper Oxide Nanoparticles Using Leaf Aqueous Extract of Hibiscus Sabdariffa L.

نویسندگان [English]

  • sahar sadegnia 1
  • ebrahim molashahi 2
  • alireza einali 3
  • omid azizian sharme 4
چکیده [English]

Physical and chemical methods for synthesis of nanoparticles are not cost efficient. Present study is the first report to phytosynthesis of Copper Oxide nanoparticles using leaf aqueous extract of Hibiscus sabdariffa L. In this research, 2 ml of extract was added to 4 ml of CuCl2.2H2O with concentration 10 mM. In order to obtain nanoparticles with uniform shape and size, the parameters affecting to synthesis, such as: pH of reaction, volume and concentration of extract, concentration of Copper salt and time of reaction were studied and all of them were optimized by UV-Vis spectrophotometry technique. Transmission Electron Microscopy (TEM) and Fourier Transformation Infra-Red (FT-IR) spectroscopy were used for investigated the shape and size of nanoparticles and detection the functional groups involved in the synthesis and stabilization Copper Oxide nanoparticles respectively. Results showed that the extract of Hibiscus sabdariffa L. can reduces the Cu 2+ ions to Cu 0 atoms with nano metric size and the color of solution changed to green. The TEM image of CuO NPs showed that the average size was between 10-20 nm and all of them had spherical shape. Also, the best condition for the synthesis of Copper Oxide nanoparticles were at: pH= 8, 9 mL of extract with concentration of 5% and CuCl2.2H2O with concentration of 10 mM and these nanoparticles were very stable in 6 days after synthesis.

کلیدواژه‌ها [English]

  • Cupper oxide Nanoparticles
  • Green synthesis
  • Hibiscus sabdariffa L
  • Optimization
[1] Dubeya, SH.P.; Lahtinen, M.; Sillanpaa, M.; Process Biochem. 45(7), 1065–71, 2010.
[2] Dwivedi, A.G.; Gopol, K; Colloids Surf. A Physicochem. Eng. Asp. 369(1-3), 27-33, 2010.
[3] Mock, J.J.; Barbic, M.; Smith, D.R.; Schultz, D.A.; Schultz, S; J. Chem. Phys. 116(15), 6755-59, 2002.
[4] Gardea-Torresdey, J.L.; Gomez, E.; Peralta-Videa, J.R.; Parsons, J.G.; Troiani, H.; Troiani, M.; Langmuir. 19(4), 1357-1361, 2003.
[5] Mahendra, R.; Alka, Y.; Aniket, G.; Biotechnol. Adv. 27(1), 76-83, 2009.
[6] Govindaraju, K.; Tamilselvan, S.; Kiruthiga, V.; Singaravelu, G.; J. Biopestic. 3(1), 394–399, 2010.
[7] Nanda, A.; Saravanam, M.; Hil, M.P.; Nanomedicine 5, 452-456, 2009.
[8] Zhanjiang, Z.; Jinpei, L; Rare Metal Materials and Engineering 41(10), 1700-1705, 2012.
[9] Gajbhiye, M.; Kesharwani, J.; Ingle, A.; Gade, A.; Rai, M.; Nanomed NBM. 5, 382-6, 2009.
[10] Shahverdi, A.R.; Minaeian, S.; Shahverdi, H.R.; Jamalifar, H.; Nohi, A.A.; Proc Biochem. 42, 919-23, 2007.
[11] Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M.; J Colloid Interface Sci. 275, 496-502, 2002.
[12] Jianrong, C.; Yuqing, M.; Nongyue, H.; Xiaohua, W.; Sijiao, L.; Biotech. Advances 22, 505-518, 2004.
[13] Ahmad, N.; Sharma, S.; Alam, M.K.; Singh, V.N.; Shamsi, S.F.; Mehta, B.R.; Anjum, F.; Colloids Surf. B. 81, 81-86, 2010.
[14] Wang, Y.; He, X.; Wang, K.; Zhang, X.; Tan, W.; Colloids and surfaces B, Colloids Surf. 73, 75-79, 2009.
[15] Toghroli, H.; Saravani, H.; Nanoscale 5(1), 23-32, 2018.
[16] Salavati-Niasari, M.; Davar, F.; Mater. Lett. 63, 441–443, 2009.
[17] Asemani, M.; Anarjan, N.; Green Process Synth. 8, 557-567, 2019.
[18] Vijay Kumar, P.P.N.; Shameem, U.; Kollu, P.; Kalyani, R.L.; Pammi, S.V.N.; BioNanoSci. 5, 135-139, 2015.
[19] Shi, L-B.; Tang, P.F.; Zhang, W.; Zhao, Y.P.; Zhang, L.CH.; Zhang, H.; Trop J Pharm Res. 16(1), 185-192, 2017.
[20] Mehrzadeh, M.; Valizadeh, J.; Ghasemi, A.; J. Med. Plants. 16(64), 107-122, 2017.
[21] Olusola, O.A.; Olusola, A.O.; Bada, S.O.; Obi, F.O.; Am. J. Biochem. 2(2), 1-6, 2012.
[22] Yurdiansyah, A.; Suhartanti, D.; IC-GWBT (Conferences), 23-24, 2012.
[23] Nune, S.K.; Chanda, N.; Shukla, R.; Katti, K.; Kulkarni, R.R.; Thilakavathi, S.; Mekapothula, S.; Kannan, R.; Katti, K.V.; J. Mater. Chem, 19, 2912 – 2920, 2009.
[24] Thovhogi, N.; Diallo, A.; Gurib-Fakim, A.; Maaza, M.; Journal of Alloys and Compounds 647, 392-396, 2015.
[25] Azizian Shermeh, O.; Einali, A.; Ghasemi, A.; Adv Powder Technol. 28, 3164-3171, 2017.
[26] Azizian Shermeh, O.; Valizadeh, M.; Taherizadeh, M.; Beigomi, M.; Appl Nanosci. 10, 2907-2920, 2020.
[27] Thamer, N.A.; Muftin, N.Q.; Al-Rubae, S.H.N.; Asian J. Chem. 30(7), 1559-1563, 2018.
[28] Waghmar, S.S.; Deshmukh, A.M.; Sadowski, Z.; Afr. J. Microbiol. Res. 8 (2), 138-146, 2014
[29] Armendariz, V.; Herrera, I.; Peralta-Videa , J.R.; Jose-Yacaman, M.; Troiani, H.; Santiago, P.P.; J Nanopar Re. 6(4), 377-85, 2014.
[30] Supraja, S.; Mohammed Ali, S.; Chakravarthy, N.; Jayaprakash Priya, A.; Sagadevan, E.; Kasinathan, M.K.; Sindhu, S.; Arumugam, P.; Int J Chem Tech Research. 5 (1), 271-77, 2013.
[31] Shenya, D.S.; Mathewa, J.; Philip, D.; Spectrochim Acta A. 79(1), 254–62, 2011.
[32] Philip, D.; Physica E. 42(5), 1417–24, 2010.
[33] Azizian-Shermeh, O.; Taherizadeh, M.; Valizadeh, M.; Valizadeh, J.; Qasemi, A.; Naroei, B.; Qom Univ Med Sci J. 11(5), 38-52, 2017.
[34] Azizian-Shermeh, O.; Valizadeh, J.; Noroozifar, M.; Qasemi, A.; Valizadeh, M.; Eco-phytochemical Journal of Medicinal Plants, 1(4), 1-18, 2016.
[35] Azizian-Shermeh, O.; Valizadeh, J.; Noroozifar, M.; Qasemi, A.; Journal of Ilam University of Medical Sciences, 24(5), 92-108, 2016.
[36] Azizian-Shermeh, O.; Taherizadeh, M.; Valizadeh, M.; Qasemi, A.; Beigomi, M.; Kamali Deljoo, M.; Journal of Food Technology and Nutrition, 16(1), 31-48, 2019.
[37] Azizian-Shermeh, O.; Jalali-Nezhad, A.A.; Taherizadeh, M.; Qasemi, A.; J Inorg Organomet Polym, 31, 279–291, 2021.
[38] Etemadi, M.; Mohebbi-Kalhori, D.; Azizian-Shermeh, O.; Qasemi, A.; J Fasa Univ Med Sci. 9 (3), 1632-1645, 2017.
[39] Marambio-Jones, C.; Hoek, E.M.V.; J Nanopart Res. 12(5), 1531-51, 2010.
[40] Chaloupka‌, K., Malam, Y.; Seifalian, A.M.; Trends Biotechnol. 28, 580-588, 2010.